skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zongchen Chen, Andreas Galanis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We give an FPRAS for counting q-colorings for even on almost every Δ-regular bipartite graph. This improves significantly upon the previous best bound of by Jenssen, Keevash, and Perkins (SODA'19). Analogously, for the hard-core model on independentsets weighted by λ > 0, we present an FPRAS for estimating the partition function when , which improves upon previous results by an Ω(log Δ) factor. Our results for the colorings and hard-core models follow from a general result that applies to arbitrary spin systems. Our main contribution is to show how to elevate probabilistic/analytic bounds on the marginal probabilities for the typical structure of phases on random bipartite regular graphs into efficient algorithms, using the polymer method. We further show evidence that our results for colorings and independent sets are within a constant factor of best possible using current polymer-method approaches. 
    more » « less